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Abstract

Mapping of landslide susceptibility in forested watersheds is important for management decisions. In forested watersheds,
especially in mountainous areas, the spatial distribution of relevant parameters for landslide prediction is often unavailable. This
paper presents a GIS-based modeling approach that includes representation of the uncertainty and variability inherent in
parameters. In this approach, grid-based tools are used to integrate the Soil Moisture Routing (SMR) model and infinite slope
model with probabilistic analysis. The SMR model is a daily water balance model that simulates the hydrology of forested
watersheds by combining climate data, a digital elevation model, soil, and land use data. The infinite slope model is used for slope
stability analysis and determining the factor of safety for a slope. Monte Carlo simulation is used to incorporate the variability of
input parameters and account for uncertainties associated with the evaluation of landslide susceptibility. This integrated approach of
dynamic slope stability analysis was applied to the 72-km2 Pete King watershed located in the Clearwater National Forest in north-
central Idaho, USA, where landslides have occurred. A 30-year simulation was performed beginning with the existing vegetation
covers that represented the watershed during the landslide year. Comparison of the GIS-based approach with existing models
(FSmet and SHALSTAB) showed better precision of landslides based on the ratio of correctly identified landslides to susceptible
areas. Analysis of landslide susceptibility showed that (1) the proportion of susceptible and non-susceptible cells changes spatially
and temporally, (2) changed cells were a function of effective precipitation and soil storage amount, and (3) cell stability increased
over time especially for clear-cut areas as root strength increased and vegetation transitioned to regenerated forest. Our modeling
results showed that landslide susceptibility is strongly influenced by natural processes and human activities in space and time;
while results from simulated outputs show the potential for decision-making in effective forest planning by using various
management scenarios and controlling factors that influence landslide susceptibility. Such a process-based tool could be used to
deal with real-dynamic systems to help decision-makers to answer complex landslide susceptibility questions.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Landslides are natural geologic processes that
constantly evolve and reshape the Earth's surface.
The recent intensification of land-use changes has
raised the level of landslide susceptibility, particularly
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in mountainous regions. Landslides that initiate in steep
mountainous terrain are a major concern to land-use
managers worldwide. Human activities, such as urban
expansion, road-building, and deforestation increase the
potential for landslides and result in adverse impacts to
the environment (Chung et al., 1995; Burton and
Bathurst, 1998). In the US alone, landslides cause an
estimated annual average economic cost of $1.5 billion
(Glade, 1998). In Japan, annual losses are $2 billion and
in Italy, annual losses are more than $ 2.6 billion (Blöchl
and Braun, 2005). Worldwide in the 20th century the
Asian continent has experienced the most landslide
events (220 reported), the Americas reported the most
deaths and injuries (25,000+) while Europe had the
highest average damage per single event ($23 million)
(CRED, 2006).

Landslides result from interdependent spatio-tempo-
ral processes, including hydrology (rainfall, evapotrans-
piration, and groundwater), vegetation surcharge
(weight of vegetation), root strength, soil condition,
bedrock, topography, and human activities (Wu and
Sidle, 1995). For instance, change in the forest cover,
particularly from clear-cut harvesting, affect processes
of soil infiltration and evapotranspiration as well as
vegetation surcharge and root strength, which collec-
tively tend to decrease slope stability and increase the
risk of landsliding. In steep soil-mantled landscapes,
shallow landslide occurrences exert a tremendous
downstream impact by transporting sediment and debris
from higher to gentler slopes. Downstream effects from
landslides result in decreased water quality, loss of fish
spawning habitat, and debris jams that may break during
peak flows, thereby scouring channels and destroying
riparian vegetation.

Mapping areas susceptible to landslides is essential
for land-use management and should become a standard
tool to support land management decision-making.
Consequently, the need for methodologies which
guide managers to choose the best management
strategies while minimizing impacts from land-use
activities in vulnerable slope areas, is increasing.
Many methods and techniques have been proposed to
evaluate where or when landslides are most likely to
occur, some using Geographic Information Systems
(GIS) (Ward et al., 1982; Carrara, 1983; Okimura and
Ichikawa, 1985; Hammond et al., 1992; Montgomery
and Dietrich, 1994; Carrara et al., 1995; Mark and Ellen,
1995; Wu and Sidle, 1995; Duan and Grant, 2000;
Gorsevski, 2002; Ayalew and Yamagishi, 2005; Guz-
zetti et al., 2005). Quantitative techniques include:
stability ranking based on criteria such as slope, parent
material, and elevation (McClelland et al., 1997;
Moreiras, 2005); statistical models linking environmen-
tal attributes using spatial correlation (Carrara, 1983;
Carrara et al., 1991; Chung et al., 1995; Chung and
Fabbri, 1999; Dhakal et al., 2000; Gorsevski, 2002;
Gorsevski et al., 2000; Gorsevski et al., 2003; Gorsevski
and Gessler, 2003; Gorsevski et al., 2005; Ayalew and
Yamagishi, 2005), and process models that combine the
infinite slope equation and hydrological components
(Montgomery and Dietrich, 1994; Wu and Sidle, 1995;
Gorsevski, 2002). Regionally, methods like the Forest
Service method (FSmet; McClelland et al., 1997) and
SHALSTAB (Dietrich and Montgomery, 1998) are used
to identify landslide susceptibility. However, these
methods usually do not address influences of temporally
varying precipitation, vegetation dynamics, uncertainty
associated with input parameters, as well as various
scenarios that may be implemented through an extended
management period. Outputs from these methods are
limited to only a snapshot of spatial prediction of
landslide susceptibility andmay not account for dynamic
processes.

Prediction of landslide susceptibility based on static
environmental factors and/or the existence of steady-
state conditions appears to be simplistic (Wu and Sidle,
1995; Gorsevski, 2002; Gorsevski et al., 2003).
Relatively static environmental factors (i.e., elevation,
slope, aspect, and topographic curvatures) exhibit
negligible changes in their state through time, and differ
from dynamic factors such as climatic or human
activities, which tend to alter landslide susceptibility
through time. However, spatial differences do exist in
both environmental factors. To predict the spatial and
temporal patterns of areas susceptible to landslides, a
distributed approach is needed that incorporates varying
precipitation intensity, soil depth, vegetation (species,
age, density), and root strength. Wu and Sidle (1995)
developed and tested a dynamic, distributed, physically
based slope stability model (dSLAM). Their model
includes the infinite slope model (Hammond et al.,
1992; Montgomery and Dietrich, 1994; Wu and Sidle,
1995), a kinematic wave groundwater model, and a
dynamic vegetation growth model including continuous
changes in root cohesion and vegetation surcharge. The
dSLAM model uses individual hourly rainfall hyeto-
graphs for event simulations or long series of random
rainstorms for long-term simulations. Slope stability is
simulated using the spatial distribution of the factor of
safety (FS), which is the ratio of resisting and driving
forces favoring failure. Application of dSLAM is
feasible only in areas with sufficient information on
the spatial variability of parameters such as soil depth,
root strength, and vegetation surcharge. Because detailed
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mapping of such parameters in forested andmountainous
areas is rare, an alternative representation of the
uncertainty and variability inherent in these parameters
is needed.

Therefore, in this paper we present a different
dynamic, distributed landslide susceptibility model,
which is capable of predicting and mapping areas
susceptible to landslides and explicitly takes account of
uncertainty in input variables due to measurement
logistics. We integrate the Soil Moisture Routing
(SMR) model (Boll et al., 1998; Frankenberger et al.,
1999) with the infinite slope equation and Monte Carlo
simulation. In this integrated approach, input parameters
that are highly variable in space and time (e.g., soil
depth, root strength, and vegetation surcharge) are
expressed as mathematical functions such as uniform
and log-normal probability distributions and then
sampled and statistically evaluated using Monte Carlo
simulation (Hammond et al., 1992; Burrough and
McDonnell, 1998; Malczewski, 1999; Duan and
Grant, 2000). Monte Carlo simulation reflects the effects
of uncertainties associated with the input parameters by
evaluating a large number (i.e., n=1000) of possible
scenarios and simulating the range of probable values for
each input parameter.

The integrated approach (SMR/FS/Monte Carlo)
that was developed fully within the ARC/INFO GRID
module was used to simulate the hydrology of the Pete
King watershed in central Idaho and estimate the
spatial and temporal distribution of the factor of safety.
This new approach is intended to improve upon
regional methods such as FSmet and SHALSTAB.
Three specific objectives are addressed: (1) to examine
if the spatial prediction of landslide susceptibility using
the integrated approach yields better accuracy or
precision than spatial prediction using existing models
(FSmet, SHALSTAB); (2) to examine if the probability
of slope failure changes for each year over a 30-year
simulation (temporal change); and (3) to examine if the
probability of slope failure changes spatially over a 30-
year simulation. A 30-year modeling period was
chosen because of the management period for harvest-
ing tree species, but this period is flexible and users
could select other time periods based on interests for
use. The 30-year period also allows forest classes with
at least a 20-year period to transition to different forest
classes and captures the trends driven by root strength
on slope stability. To evaluate the first objective, the
criteria used for judging which approach yields better
accuracy or precision uses a ratio of correctly
identified landslides to areas classified as susceptible.
To evaluate the second and the third objectives, the
spatio-temporal results generated by the integrated
approach are evaluated.

2. Overview of the SMR/FS/Monte Carlo approach

The following sections detail the components for the
SMR/FS/Monte Carlo approach, and briefly describe
the existing FSmet and SHALSTAB models that were
tested and compared in the study area.

2.1. Soil moisture routing model

The SMR model used here (Boll et al., 1998;
Frankenberger et al., 1999) is a simple distributed
water balance model running on a daily time step, which
predicts saturation-excess overland flow occurring at
any point in a watershed using a raster GIS. The cell size
of the raster data is optional but the optimal dimensions
range from 10 to 30m (Boll et al., 1998). The data sets
used by the SMR model combine climate data, a digital
elevation model, multi-layered soils, and land use data.
The SMR model calculates the water balance at each
time step (e.g. daily) for each grid-cell using the
following equation:

Di
dhi
dt

¼ PðtÞi � ETðtÞi þ
P

Qin:i �
P

Qout:i

A
� Li � Ri

ð1Þ
where i is the cell address; t is time; Di is depth to
restrictive layer for each cell i; θi is the volumetric soil
moisture content of the cell; P(t)i is precipitation (rain
and snowmelt) for time t and cell i; ET(t)i is actual
evapotranspiration for time t and cell i; ∑Qin.i is lateral
inflow from surrounding upslope cells;∑Qout.i is lateral
outflow to surrounding downslope cells; Li is drainage
out of the surface soil layers to bedrock for cell i; Ri is
surface runoff for cell i; and A is the area of the cell.
Daily precipitation and lateral flow from uphill cells are
the inputs to each cell in the model, while lateral flow to
downhill cells, percolation into the subsurface, evapo-
transpiration, and surface runoff are the outputs from
each cell.

Precipitation consists of all moisture inputs, includ-
ing rainfall and snowmelt. Precipitation occurring when
the mean daily temperature is below 0°C is assumed to
be snow. Snow is assumed to remain until the mean
daily temperature is above 0°C. Snowmelt is modeled
with the degree-day method (U.S. Army Corps of
Engineers, 1960):

M ¼ mt þ k; if t > 0 -C ð2Þ
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where M is snowmelt (cm/day); t is the average daily
temperature; m is the snowmelt factor (0.23cm/°C in
forested and 0.27cm/°C in non-forested areas); and k is a
constant (0 in forested and 1.22cm in non-forested
areas).

Evapotranspiration for cell i (ETi) is calculated as a
function of daily potential evapotranspiration, vegeta-
tion, and soil moisture content in the cell. When the
moisture content is below the wilting point, there is no
evapotranspiration. Evapotranspiration takes place only
when the matric potential is at 1/3bar or wetter, and a
linear relationship is assumed (Thornthwaite and
Mather, 1955) between the wilting point and 1/3bar.

ETi ¼ PETðET=PETÞici ð3Þ
where PET is potential evapotranspiration; (ET/PET)i is
the ratio of actual to potential evapotranspiration based
on soil moisture content; and ci is a vegetation
coefficient that varies throughout the year for each
vegetation class.

Subsurface lateral flow is calculated for each cell
using Darcy's Law, by approximating the hydraulic
gradient by the land slope, βi, at each cell:

Qout:i ¼ wKðhiÞDibi ð4Þ
where Qout.i is lateral outflow from the cell; Di is depth
to restrictive layer for each cell i; w is width of each cell;
and K(θi) is lateral hydraulic conductivity of the soil
profile at cell i as a function of the soil moisture content.
When the average θi is less than the field capacity, θfc,
the following equation holds:

K hið Þ ¼ Ksexp �a
hs � hi
hs � hr

� �
ð5Þ

where Ks is saturated hydraulic conductivity; θr is
residual moisture content; θs is porosity; and a is a
constant (Bresler et al., 1978). If the soil moisture
content is above the field capacity, the hydraulic
conductivity is calculated as.

K hið Þ ¼ Ks � K hfcð Þð Þ �a
hi � hfc
hs � hfc

� �
þ K hfcð Þ ð6Þ

Lateral flow is calculated by a multiple flow path
algorithm (Quinn et al., 1991) that divides the lateral
flow among all downslope cells based on the steepest
drop and distance between the cells:

Pij ¼ ðZi � ZjÞ=LjPn
j¼1

½ðZi � ZjÞ=Lj� ð7Þ
where Pij is the portion of the total flow out of cell i
routed to a neighboring cell j; Zi and Zj is the elevation of
cell i and its neighbor j, respectively; Lj is the distance
from cell i to neighbor j; and n is the number of
downslope neighbors of cell i.

Stream flow calculated by SMR is the sum of surface
runoff generated in the watershed, subsurface lateral
flow into the stream, and a portion of the water stored in
the bedrock reservoir each day, which represents the
base flow. SMR was calibrated using observed stream
flow and Monte Carlo simulation. Water table depth in
each cell was used in the infinite slope equation to
calculate the factor of safety.

2.2. Infinite slope equation and factor of safety

The infinite slope equation has been applied to
calculate FS in many slope stability investigations
because of its simplicity (Hammond et al., 1992;
Montgomery and Dietrich, 1994; Wu and Sidle,
1995). FS is defined as the ratio of resisting (shear
strength) to driving forces (shear stress):

FS ¼ Cr þ Cscos2a½q0 þ gðD� DwÞ þ ðgsat � gwÞDw�tan/
sinacosa½q0 þ gðD� DwÞ þ gsatDw�

ð8Þ
where α is slope angle of the ground surface; D is total
soil thickness; Dw is saturated soil thickness; Cr is tree
root strength expressed as cohesion; q0 is tree surcharge;
Cs is soil cohesion; ϕ is effective internal angle of
friction; γ is moist soil unit weight; γsat is saturated soil
unit weight; and γw is water unit weight. A slope with a
FS >1 is considered stable, while a slope with a FS <1 is
unstable. In addition, vegetation surcharge, the weight
of vegetation that adds to the gravitational force on a
slope, needs to be considered. The calculation of a single
FS is deterministic and does not incorporate uncertainty
and variability in the parameters. For instance, a slope
with a FS of 0.8 may not fail due to model input
uncertainties. Introducing probabilistic analysis into the
calculation of FS can provide an estimate of the
probability of slope failure, which may be calculated
as the number of occurrences of FS <1 at a particular
location, divided by the total number of runs.
2.3. Monte Carlo simulation

This study attempts to characterize and incorporate
uncertainty into the calculation of the probability of slope
failure using Monte Carlo simulation. Table 1 shows the
parameters that were considered to vary with their



Table 1
Stochastic variables, their probability distributions, and references that
suggested the distributions

Stochastic
variable

Probability
distribution

Reference

Soil depth Uniform Ward et al. (1982),
Duan and Grant (2000)

Soil cohesion Uniform Ward et al. (1982),
Duan and Grant (2000)

Internal friction
angle

Uniform Ward et al. (1982),
Duan and Grant (2000)

Root strength Lognormal Hammond et al. (1992)
Vegetation
surcharge

Uniform, and
dynamic with age

Ward et al. (1982),
Duan and Grant (2000)
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assumed probability distributions (Ward et al., 1982;
Hammond et al., 1992; Duan and Grant, 2000). After
running a large number of trials (at least 1000 random
simulations) to eliminate variations within the resulting
probability density functions (PDFs), statistical properties
(e.g., mean and standard deviation) for each entity were
calculated (Burrough and McDonnell, 1998). For in-
stance, a soil inventory describing upper and lower limits
of soil depth was represented by a PDF with a uniform
distribution functionwith a rectangular shape as described
by previous work (e.g., Hammond et al., 1992).

2.4. FSmet and SHALSTAB

Landslide susceptibility outputs were generated
using two existing models: FSmet (McClelland et al.,
1997) and SHALSTAB (Dietrich and Montgomery,
1998). FSmet represents a heuristic approach specifi-
cally developed for the Clearwater National Forest
(CNF), while SHALSTAB is a physically based model
including the infinite slope equation of the Mohr–
Coulomb failure law and steady-state shallow subsur-
face flow (O'Loughlin, 1986).

The FSmet was developed using the following
attributes: geology, elevation, aspect, slope gradient,
landform, and a database of landslide event locations
from 1995 to 1996 (described below). The geology was
derived from parent material groupings from the Clear-
water Land System Inventory (FS-CNF, 1983) at a
cartographic scale of 1:100,000 and included: the Idaho
batholith (primarily granitics), border (high grade
metamorphic rocks), belt (weakly metamorphic rocks),
Columbia River basalts (layered volcanic materials), and
alluvium (materials from surface erosion and deposi-
tion). Elevation, aspect, and slope were extracted from
1:24,000 topographic maps in conjunction with stereo
pair imagery. Landform groups included breaklands,
mountain slopes, mountain ridges, gentle hills, mass
wasting landforms, and valleys. The landform groups
were also extracted from the Clearwater Land System
Inventory at a cartographic scale of 1:100,000 which are
mainly described by slope steepness and landform
derivation processes. However, the outputs from
FSmet are compiled by intersecting areas that meet the
criteria of slopes greater than 60%, parent materials of
schist and granitics, and elevations below 1400m. The
restriction to 1400m elevation is based on the fact that
during the landslide events in the winter of 1995–1996,
the snowpack existed at higher elevations so cooler
temperatures did not contribute to rain-on-snow events
that cause landsliding. The original landslide database
used by McClelland et al. (1997) for the development of
the FSmet was also used for our study to permit the
comparison of landslide susceptibility.

SHALSTAB was implemented as an ArcView
extension to generate landslide susceptibility output
using a digital elevation model (DEM), soil bulk
density, and friction angle as inputs. The soil bulk
density and friction angle were set to 1860kg/m3 and
32°, respectively, which are the same as the mean values
derived by the Monte Carlo simulation and used in the
integrated SMR/FS/Monte Carlo approach. SHAL-
STAB's one-step option (Dietrich and Montgomery,
1998) was used to calculate the critical value of the ratio
of steady-state effective precipitation (rain minus
evapotranspiration; q) to transmissivity (the ground's
subsurface ability to convey water downslope; T)
needed to generate a landslide. The q/T ratio has
dimensions of (L/T)/(L2/T) or L−1. A large q/T ratio
implies that the soil approaches saturation, and a high
susceptibility of slope failure. Because q/T is always <1,
log(q/T) is reported. SHALSTAB classifies landslide
susceptibility as: “unconditionally stable,” “potentially
unstable,” and “unconditionally unstable”. Uncondi-
tionally stable elements are predicted not to fail even
when saturated, while unconditionally unstable are
predicted to fail even when dry. Potentially unstable
elements are associated with values of log(q/T) ranging
from −1.9 to −3.4 incremented by −0.3 where divisions
within the range of values are user-imposed. Areas with
large absolute values of log(q/T) represent the least
stable areas, whereas areas with small absolute values of
log(q/T) represent the most stable areas. We applied
arbitrary cut-off values of greater than −2.2 to represent
“unconditionally stable” areas, greater than −2.8 to
represent the mid-point of “potentially unstable” areas,
and greater than −3.1 to represent “unconditionally
unstable” areas. The landslide database from 1995 to
1996 used by McClelland et al. (1997) was also used for
comparison.
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3. Application of the modeling approach

3.1. Study area

The integrated modeling approach and the existing
models were tested on the Pete King watershed in the
CNF in north-central Idaho (Fig. 1). Pete King is a 72-km2

drainage, with elevation ranging from 450 to 1592m and
slopes ranging between 0° and 45°. Annual precipitation
averages 970mm. Much of this precipitation falls as snow
during winter and spring. Peak stream discharge occurs in
late spring and early summer. Soils are variable but
typically shallow and well drained and primarily derived
from the Belt Supergroup (gneiss and schist) and Idaho
Batholith parent materials (FS-CNF, 1983). The vegeta-
tion across the elevational gradient includes Grand fir
(Abies grandis), Douglas fir (Pseudotsuga menziesii),
Subalpine fir (Abies lasiocarpa), Western redcedar (Thuja
plicata), Western white pine (Pinus monticola), and
various shrubs and grasses with short growing seasons
particularly at high elevations.
Fig. 1. Distribution of landslides over the Pete King watershed during the w
Mercator (UTM) using the American Datum of 1927.
The Pete King watershed was affected by landslide
events that occurred during the winter of 1995–1996.
Landslides were assessed and mapped through aerial
reconnaissance flights and field inventory in July 1996.
Aerial photography was acquired at a scale of 1:15,840
followed by photo interpretation between October 1996
and February 1997 (McClelland et al., 1997). Landslide
locations identified by initial aerial and field reconnais-
sance were transferred to 1:24,000-base quadrangle
maps to be used by the field crew. About 40% of the
total landslides identified from aerial photos were
visited and verified. In 1999, the authors verified the
GIS data quality by comparing two sets of aerial photos,
one was acquired in August 1995 prior to the 1995
November storm, and the other was acquired in July,
1996 following the landslide events and was used for the
original landslide inventory. The presence or absence of
a landslide was represented as a (30-m) grid coverage
with values of 1 for presence and 0 for absence for each
grid cell. The initiation area or the scar of each landslide
was represented as a point. A total of 45 landslides (with
inter 1995–1996 storm events. The projection is Universal Transverse



Table 2
Soil physical parameters used in the SMR model

Soil parameter Soil layer Reference

A E B

(Lateral) Saturated hydraulic
conductivity (cm/day)

160 30 50

(Restricting layer) Saturated
hydraulic conductivity
(cm/day)

0.04 0.04 0.04

Saturated moisture
content (cm3/cm3)

0.58 0.42 0.52 Flanagan and
Livingston
(1995)

Field capacity
(cm3/cm3)

0.37 0.27 0.28 Flanagan and
Livingston
(1995)

Permanent wilting
(cm3/cm3)

0.11 0.08 0.09 Saxton et al.
(1986)
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a failure surface in the soil mantle) with a minimal size
of 10cubic yards (7.65m3) were recorded. These
include landslides initiated as a consequence of natural
processes as well as land-use activities. The watershed
has experienced a number of road failures in 1970,
1978, and 1987. Other historical data suggest that
2582ha of forest have been harvested, 256km of roads
have been constructed, together covering 36.3% of the
watershed, and in 1934, a large fire burned 34% of the
watershed (Hickey, 1997). During the last 60years,
approximately 70% of the watershed has experienced
some form of disturbance such as roads, harvest, and fire
(Hickey, 1997).

3.2. SMR model input

In order to corroborate the outputs from the SMR
model with field measurements, the daily stream flow to
the primary outlet of the modeled watershed, generated
by SMR using climatic data, was compared against the
observed stream flow. To capture model responses
associated with an extreme year when actual landslides
occurred, the model was calibrated for a period of
14months in the year of the landslide events (from
Fig. 2. Soil types in the P
July 1, 1995 to September 1, 1996) and then used to
simulate a period of 30years of stochastically derived
data using a climate generator program (CLIGEN;
Nicks et al., 1995). Input for the SMR model
consisted of the 7.5-min U.S. Geological Survey
DEM (nominally 30m resolution), land cover derived
from a Landsat Thematic Mapper image classification
ete King watershed.



Table 3
Lower and upper boundaries of horizon depths (cm) categorized by
CTI quartiles that were used to model spatially distributed soil depths
for the Pete King watershed

Soil
horizon

Compound Topographic Index (CTI)

Quartile 1 Quartile 2 Quartile 3 Quartile 4

A 0–15 0–20 0–25 0–30
E 15–46 20–66 25–86 30–106
B 46–87 66–107 86–127 106–147
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(30m resolution), observed daily weather data for the
calibration period, stochastically generated daily
weather data for the simulation period, and soils data at
Fig. 3. Climate data used in the SMR model. (a) Hyetograph for the Pete K
maximum and minimum temperature; and (c) potential evapotranspiration e
a 1:24000 scale from the Soil Survey Geographic
Database (SSURGO) (USDA-NRCS, 2001).

We assumed that the soil texture for the entire study
area is loam (Fig. 2), and the soil profile is divided into
three horizons (A, E, and B). These assumptions
simplify the derivation of the soil physical parameters
(Table 2) that were not available through the soil survey
for the study area. The depths of the profile horizon
boundaries were extracted from SSURGO and later
adjusted when we calibrated the SMR model (described
below). The depth of each horizon inferred by SSURGO
is 0 to 30cm for the A horizon, 30 to 106cm for the E
horizon, and 106 to 147cm for the B horizon. Soil
ing watershed including the storm events in 1995–1996; (b) observed
stimated by Hargreaves and Samani's (1985) method.



Table 4
Vegetation parameters, their values and references showing the values

Parameter Value used Reference

Tree surcharge
Wmax, maximum
(kPa)

[0.5, 2.5] uniform
distribution

Hammond et al. (1992)

aw, coefficient 0.952 Sidle (1991), Duan and
Grant (2000)

bw, coefficient 19.05 Sidle (1991), Duan and
Grant (2000)

cw, coefficient −0.05 Sidle (1991), Duan and
Grant (2000)

kw, coefficient 0.12 Sidle (1991), Duan and
Grant (2000)

Root strength
Rmax, maximum
(kPa)

[2.97, 1.92] lognormal
distribution

Hammond et al. (1992)

kd, coefficient 0.402 Sidle (1991), Duan and
Grant (2000)

nd, coefficient 0.647 Sidle (1991), Duan and
Grant (2000)

ar, coefficient 0.952 Sidle (1991), Duan and
Grant (2000)

br, coefficient 19.05 Sidle (1991), Duan and
Grant (2000)

dr, coefficient −0.05 Sidle (1991), Duan and
Grant (2000)

kr, coefficient 0.12 Sidle (1991), Duan and
Grant (2000)

Clear cut 0-year age
Regeneration 20-year age
Forest 40-year age
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moisture data were taken from Flanagan and Livingston
(1995) and Saxton et al. (1986) (Table 2). Empirical
approaches (e.g. regressions) were taken when inde-
pendent variables such as sand, clay, organic matter,
bulk density, cation exchange capacity (CEC), and soil
depth were estimated from the SSURGO data. To
represent soil depths across the Pete King watershed
more realistically, the compound topographic index
(CTI) was calculated, because it is highly correlated
with overall soil depth (Dietrich et al., 1995; Gessler et
al., 1995, 2000). The CTI, also referred to as the steady-
state wetness index (Beven and Kirkby, 1979; Moore et
al., 1991), is defined as:

CTI ¼ lnðAs=tanbÞ ð9Þ

where As is specific catchment area in m2 and β is the
slope angle in degrees. A distribution of CTI for the
watershed, divided evenly into four quartile classes with
different sets of minimum and maximum soil depth
values, were used in the Monte Carlo simulation. Table
3 shows the minimum and maximum horizon depth
values that were used to represent the CTI and soil depth
relationships. The values were guided by SSURGO but
were slightly adjusted to characterize steep hillslopes
with shallow soil depths and low quartile CTI values as
well as valley-bottoms with deep soil depths and high
quartile CTI values.

Assuming a uniform frequency distribution between
the minimum and maximum values (Table 1), the
average CTI/depth for each cell in each quartile was
described by using 1000 random simulations.

Daily weather data (NOAA, 2001) from the Fenn
Ranger Station (46°06′12″N, 115°33′55″W; elevation
487m) were used for the calibration period (Fig. 3).
Daily weather inputs (NOAA, 2001) were minimum and
maximum temperatures and total precipitation. The
temperature was adjusted for elevation by a lapse rate of
0.64°C per 100m. A total of 20 missing values for the
precipitation data and 13 missing values for the
temperature data for 1995–1996 were interpolated
based on distance and elevation differences from nearby
weather stations (Dworshak Hatchery, Kamiah, and
Kooskia).

Potential evapotranspiration was estimated using the
Hargreaves method (Hargreaves and Samani, 1985). A
cloud-free Landsat Thematic Mapper image from 1995
was used to extract vegetation classes for the study area
to assign evapotranspiration coefficients as well as the
vegetation surcharge and root strength parameters for
the FS calculations (Table 4). The land cover was
classified using an unsupervised clustering algorithm,
which incorporated an iterative process of randomly
selecting cluster centers. Simple three vegetation cover
types, clear-cut, regenerating-young forest, and mature
forest were identified (Fig. 4). In 1995, the area con-
sisted of 44.0% clear-cut, 28.4% regenerating young
forest, and 27.6% mature forest, which correlated well
with the findings of Hickey (1997). The initial age of
each landcover type used in the simulation was 0-year
(clear-cut), 20-years (regeneration) and 40-years (ma-
ture forest). Vegetation cover change is discussed further
in Infinite Slope Model section.

3.3. SMR model: calibration

The SMR program first required a 60 to 90-day
period of simulation to assure output was insensitive to
the initial soil moisture content (Boll et al., 1998). An
arbitrary 10% initial moisture content for the watershed
was assigned (starting in July 1995). Our initial attempt
using soil depth in Table 3 greatly over predicted peak
discharges while the general stream flow curve was
slightly lower than the observed curve. Because



Fig. 4. Vegetation types in the Pete King watershed.
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SSURGO provides soil depth up to 150cm and the
average values from the PDFs generated by the Monte
Carlo simulation were used for assigning soil depths, the
maximum values of the uniform distributions of soil
depths were iteratively increased (by 10cm increments)
and re-run with the Monte Carlo simulations to improve
the fit of the peaks and that of the general stream flow
curves of the modeled and observed values. The number
of quartiles used increased successively with iteration
steps (i.e., for the first iteration we used quartile 4, for
the second quartiles 4 and 3, for the third quartiles 4 to 2,
and for the forth quartiles 4 to 1). The final soil depth
Fig. 5. Predicted versus observed stream
values used in the SMRmodel ranged from 63 to 288cm
with a mean of 147cm and standard deviation of 67cm.
Fig. 5 shows stream flow for the final calibrated model
that was used for the 30-year simulation. Almost all
stream discharge peaks were still slightly over-predicted
by the SMR model, but the general fit of the model is in
close agreement with the measured data.

3.4. Infinite slope model: input

Similar to Ward et al. (1982) and Duan and Grant
(2000), the stochastic variables input to Eq. (8) were
flow for the Pete King watershed.



Table 5
Evaluation of SMR/FS/Monte Carlo, FSmet, and SHALSTAB models
for the Pete King watershed with different cut-off values

Modeling technique Area
susceptible
to landslides
(%)

Correctly
identified
landslides
(%)

Ratio

(1) (km2) (2) (km2) (2/1)

SMR/FS/Monte Carlo (p>0.5) 8.1 5.6 20.0 0.008 2.47
SMR/FS/Monte Carlo (p>0.7) 4.5 3.1 11.1 0.005 2.47
SMR/FS/Monte Carlo (p>0.9) 1.5 1.0 2.2 0.001 1.47
SHALSTAB (cut-off>−2.2) 68.6 47.6 91.1 0.037 1.33
SHALSTAB (cut-off>−2.8) 44.5 30.9 62.2 0.025 1.40
SHALSTAB (cut-off>−3.1) 31.2 21.7 44.4 0.018 1.42
FSmet 14.0 9.7 20.0 0.008 1.43
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assumed to be independent and spatially distributed
(Table 1). However, unlike FSmet and SHALSTAB, the
SMR model dynamically simulates the saturated soil
depth in space and time for each grid cell by inputting
observed or predicted daily climate data into Eq. (1).
Therefore, this GIS-based approach allows potential
landslide-prone areas to be investigated through space
and time. Input to the infinite slope model consisted of
slope, soil depth, vegetation surcharge, and root
strength.

Slope was derived using the finite difference
formula. Gallant and Wilson (2000) showed that this
formula gives better slope accuracy in comparison with
other slope calculation approaches.

Soil depths determined for each horizon using the
Monte Carlo simulation, which were used as multi-
layer soils in the SMR module of the infinite slope
model, were combined into a single soil layer for
simplicity. Hammond et al. (1992) recommended a
weighting method for adjusting the soil shear strength
values when multiple soil layers are combined into a
single layer. The values are adjusted to account for
the shear strength along the entire failure plane. In
this study, the soil shear strength values occurring in
the base layer (B horizon) were given the highest
weight (A horizon: 0.3; E horizon: 0.3; and B
horizon: 0.4).

Vegetation surcharge was estimated using a sigmoi-
dal function as suggested by Sidle (1987). The weight of
the proportion of trees cut at the time of timber harvest is
set to zero followed by an increase according to the
function:

W ¼ Wmax½ðaw þ bwe
�kwtÞ�1 þ cw� ð10Þ

where W is the vegetation surcharge at t years after
cutting,Wmax is the maximum vegetation surcharge, and
aw, bw, cw, and kw are empirical constants. The function
assumes uniform distribution of the tree surcharge
across the area of interest, and the weight of the
understory vegetation is assumed to be negligible (Sidle,
1992). The surcharge values for the coastal forest types
of the US Pacific Northwest range from 1 to 5kPa
(O'Loughlin, 1974; Wu et al., 1979; Sidle, 1992). We
used adjusted values between 0.5 and 2.5kPa, which are
more appropriate for the CNF (i.e., smaller size timber).
Although the influence of vegetation surcharge on slope
stability is small and often omitted from calculations
(Hammond et al., 1992; Sidle, 1992), it was included
because of its relation with the root strength and possible
effect on the FS near the threshold of failure (Duan and
Grant, 2000).
Root strength was determined following Sidle
(1991), who modeled root cohesion during regeneration
(Rr) and decaying residual root strength following
harvest (Rd) using sigmoid and exponential curves,
respectively:

Rr ¼ Rmax½ðar þ bre
�kr tÞ�1 þ dr� ð11Þ

Rd ¼ Rmaxe
�kdtnd ð12Þ

where ar, br, dr, and kr are the regrowth constants, and nd
and kd are the decay constants, derived by procedures
outlined by Sidle (1991), t is the time increment, and
Rmax is the maximum root strength (Table 4).

Total root strength (Rtotal) is expressed as

Rtotal ¼ Rr þ Rd ð13Þ
Rmax (2.97kPa for the mean and 1.92kPa for the
variance; Table 4) was calculated using a lognormal
probability distribution function for shallow soils and
uncut forest with Monte Carlo simulation (Hammond et
al., 1992).

4. Results and discussion

Results of the 30-year simulation are first compared
to existing models (FSmet and SHALSTAB). Then the
analysis of temporal prediction of landslide susceptibil-
ity is described, followed by the analysis of spatial
prediction of landslide susceptibility.

4.1. Integrated approach versus existing models

The integrated modeling approach predicted land-
slide susceptibility with lower accuracy than FSmet and
SHALSTAB, but with better precision based on the
data and circumstances tested here. In this comparison,
the ratio of correctly identified landslides to area
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susceptible to landslides was used as the criteria to
evaluate the accuracy and precision of prediction of
landslide susceptibility. Three different cut-off values
were used for SMR/FS/Monte Carlo (p>0.5, p>0.7,
p>0.9), and for SHALSTAB (q/T>−2.2, q/T>−2.8, q/
T>−3.1). The values for the SMR/FS/Monte Carlo
correspond to a landslide susceptibility on scale
between 0 and 1, while those for SHALSTAB
correspond to the nominal classes (“unconditionally
Fig. 6. Spatial patterns of monthly probability of landslide
stable,” “potentially unstable,” and “unconditionally
unstable”). The output of the FSmet is a binary map
delineating susceptible and stable areas. The output of
the SMR/FS/Monte Carlo used a 30-year probability
map for the comparison. Table 5 shows the validation of
the model through the ratio values from the 1995 to 1996
landslide events. The ratio values show that SHALSTAB
and FSmet more correctly identified landslides than
SMR/FS/Monte Carlo, but SMR/FS/Monte Carlo
occurrence in the Pete King watershed for year 18.
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method classifies a smaller percentage of the land area as
susceptible. Consequently, the ratio values for SMR/FS/
Monte Carlo are much higher than for SHALSTAB and
FSmet.

However, the comparison here is intended to set a
point of reference for the capabilities of the modeling
approach, which is considerably different from the
modeling approaches of SHALSTAB and FSmet. For
example, year 18 in the simulation shows the highest
percentage of landslide prone area. The monthly spatial
patterns of landslide susceptibility are represented in Fig.
6. The percentage of susceptible area and that of
correctly identified landslides vary during the year. For
instance, using a monthly probability map for the
comparison for a cut-off value of 0.9 in May a total of
19.5% area was classified as susceptible and 40.9% of
the landslides were correctly predicted, while in the
month of August a total of 3.7% was classified as
susceptible and 9.1% of the landslides were correctly
predicted. The ratio value for the month ofMay was 2.10
and the ratio value for August was 2.46. The percentage
of correctly predicted landslides and the ratio value
associated with month of May shows an improved
accuracy and precision with the SMR/FS/Monte Carlo
modeling approach.

4.2. Analysis of temporal prediction of landslide
susceptibility

A z-test on the population of non-susceptible cells
from the 30-year simulation confirmed that the number
of susceptible and non-susceptible cells changed each
Fig. 7. Change in the number of cells prone to la
year, at a significance level of 95% (|3.798|>1.96). Time
series plots of categorized probabilities of the number of
landslide-prone cells in the Pete King watershed during
the 30-year simulation period are shown in Fig. 7. These
plots are arranged by the class of landslide probability,
and have different Y-axis scales. The solid line
represents a locally weighted regression fit known as
Loess smoother to visualize time trends. Loess smoother
is a curve-fitting technique based on local regression
(Cleveland, 1993). The p(0) plot shows that the number
of stable cells increased through time. Plots of p(0.1–
0.2), p(0.2–0.3), and p(0.3–0.4) show a constant
decrease of corresponding cells with time. The remain-
ing plots with higher landslide susceptibility show an
increase followed by a decrease, which is likely
associated with the decrease of root strength after
harvest and increase of root strength after regrowth
through the simulation period.

The influence of root strength on the time trends and
the effects of other important parameters suggested by
previous studies (e.g., Hammond et al., 1992), including
soil cohesion, internal friction angle, and soil depth, were
further evaluated by sensitivity analysis. Table 6 shows
the results obtained by altering one parameter while
others were kept constant. For instance, by decreasing
root strength by 1kPa from the values used in the
simulation, the susceptibility increased by ratio value of
0.19. When root strength was increased by 1kPa the
susceptibility to landslides decreased by a ratio value of
0.05. This implies that susceptibility increases with a
higher rate when root strength is altered through
harvesting. The sensitivity analyses suggest that the
ndslides for the 30-year simulation period.



Table 6
Sensitivity analysis of parameters used in the SMR/FS/Monte Carlo
approach

Parameter Value used Area not
susceptible to
landslides (1) %

Incorrectly
identified
landslides (2) %

Ratio
(2/1)

Soil cohesion
[0, 15] kPa 74.2 44.4 0.60
+1kPa 84.9 60.0 0.71
+2kPa 92.7 75.6 0.81

Internal friction angle
[27, 45] (°) 74.2 44.4 0.60
+1° 76.8 46.7 0.61
+2° 79.4 53.3 0.67

Root strength
−1kPa 65.3 26.7 0.41
[2,13] kPa 74.2 44.4 0.60
+1kPa 81.5 53.3 0.65

Soil depth
−10cm 76.5 46.7 0.61
[145, 69] cm 74.2 44.4 0.60
+10cm 72.2 40.0 0.55
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increase in soil cohesion decreases susceptible areas with
a higher rate than the increase in internal friction angle.
Also, the analyses suggest that thicker soils increase
susceptibility at a smaller rate than thinner soils. It should
be noted that the effects of soil depth are also a function
of slope, root cohesion, groundwater, and other variables
as described by Hammond et al. (1992), and require
additional testing to look at the interactions of these
variables.

As expected, simulation results show that landslide
susceptibility is a function of net precipitation and soil
storage amount at different times during a year.
Fig. 8. Count of susceptible cells (FS <1) for each year during
Landslide susceptibility was low during dry periods
(i.e., summer), and high during wet periods (i.e., spring).
Spatial differences were caused by different groundwa-
ter levels and possibly by other patterns such as spatio-
temporal rainfall distribution and snowmelt. The
cumulative count of all cells with a FS <1, for individual
years during the simulation period shows that year
8 exhibited the largest number of susceptible cells, while
year 28 exhibited the smallest number (Fig. 8). Year 8 is
associated with neither the highest stream discharge nor
the highest daily groundwater, but many small densely
distributed rainfall events occurred in that year. This
suggests that wet soils are prone to small and frequent
events while dry soils could withstand large but less
frequent events. However, high stream discharge was
correlated with the count of cell susceptibility (r=0.75)
and daily water table depth (r=0.77) for the simulation
period. Fig. 9 shows a time series plot of the simulated
stream flow from the watershed and the total volume of
stream discharge in m3 s−1 for each year, while Fig. 10
shows the count of cells predicted to be susceptible for
the simulated period. These figures show the similarities
in the patterns of the peak flow frequency and
magnitude of events and verify the importance of
watershed hydrology on landslide susceptibility through
time.

Simulation results also show cell susceptibility
decreased through time for the clear cut (CC),
regeneration (REG), and the forest (FOR) vegetation
classes, which is due to increased root strength in the
absence of further disturbance. Fig. 11 shows a time
series by vegetation class to represent probabilities of
number of cells susceptible to landslides. The plot
labeled CC p(0) (non-susceptible cells) shows that a
decrease was followed by an increase in non-susceptible
the 30-year simulation period in the Pete King watershed.



Fig. 9. Simulated stream flow for the Pete King watershed during the 30-year simulation period.
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Fig. 10. Simulated landslide susceptibility for the Pete King watershed during the 30-year simulation period.
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Fig. 11. Change in the number of cells susceptible to landslides by vegetation classes for the 30-year simulated period.

194 P.V. Gorsevski et al. / Geomorphology 80 (2006) 178–198
areas with the maximum susceptibility in years 12 to 13
when root strength was weakest, while the REG p(0)
and FOR p(0) show constant increase in non-susceptible
areas. The trends for the clear cuts suggest that the
susceptibility is high when root decaying reaches its
maximum while the dip in the locally weighted
regression in REG p(0) and FOR p(0) may suggest
that susceptibility for older vegetation types is driven
more likely by the frequency and the magnitude of
events (Figs. 9 and 10). Therefore, susceptibility
associated with vegetation types in long-term planning
should be considered and differentiated between
different vegetation types.

4.3. Analysis of spatial prediction of landslide
susceptibility

Comparison of the spatial changes of the FS for
the study area showed that the location of non-
susceptible cells changed over the 30-year simulation
as well as during individual years, and was controlled
by topography, soil moisture, and vegetation patterns.



Fig. 12. Spatial change in (a) percent of non-susceptible area within the Pete King watershed for the 30-year simulation period, and (b) the number of
years with FS <1 events given in percentage of area.
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Fig. 12a shows that year 28 exhibits the largest area
of non-susceptible cells, while year 18 exhibits the
largest area of susceptible cells. Also, in Fig. 12a, the
trend of a locally quadratic regression shows that the
area not susceptible to landslides increased through
time. Fig. 12b shows the areal percentage of cells
according to the number of years with at least one
event of FS <1. It shows that 2.1% of the cells have
only one year of FS <1, while 1.5% of the cells have all
Fig. 13. Change in percentage of areas of non-suscept
(29) years with FS <1. Fig. 13 shows that vegetation
types influence the spatial distribution of the FS. The
clear-cut line in Fig. 13 shows that susceptibility
increases and reaches its maximum in year 18 before
it starts to decrease again. The other vegetation types
show a constant decrease of susceptibility through time.
It is also interesting that years 13 and 15 show a rapid
decrease in susceptibility for all vegetation types, which
is reflected through the low amount of stream flow (Fig.
ible cells covered by different vegetation types.
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9). The largest susceptible area is associated with year
18, which is due to the largest single event shown in Fig.
9. However, the largest susceptible area for year 18 does
not coincide with the year that experienced the most
unstable cells (Fig 10). This implies that a single large
event that can saturate the soil influences susceptibility
in space to a large extent, while frequent small events
when the soil has been saturated can influence
susceptibility in time as well as in space.

Comparisons of spatial changes for individual
months for the most landslide prone year (18) show
that the month of May had the largest percentage of
susceptible area (33.2%) while August had the least
(3.8%). The patterns of change in year 18 (Fig. 6) appear
to be largely controlled by topography and soil moisture.
Soil moisture influence was supported by the high
correlation between the count of susceptible cells and
water table depth (r=0.89) as well as stream discharge
(r=0.80). Visual inspection of Fig. 6 also suggests that
topographically convergent areas had the highest
probability of landslide occurrence. These areas ex-
panded when they received more moisture from rain,
snowmelt, or lateral flow from adjacent cells.

5. Summary and conclusions

A dynamic, distributed GIS based model, was
presented to evaluate spatial and temporal slope
instability on a watershed scale. The model integrates
the SMR model, the infinite slope model, Monte Carlo
simulation, and continuous changes in vegetation
surcharge and root strength. The model was first
calibrated with observed daily climate and stream flow
data for the year with actual landsliding, before it was
used to simulate spatial and temporal landslide suscep-
tibility for a 30-year period. Dynamic factors (e.g., root
strength, vegetation surcharge) were included using
Monte Carlo simulation with stochastically derived
long-term climatic inputs. This approach is based on a
limited sampling of landslide events. The use of
theoretical distributions of some parameters is an
attempt to explicitly increase detailed mapping infor-
mation in remote areas susceptible to landslides.

The obtained spatial landslide prediction offered
significant improvements over the existing models
(FSmet and SHALSTAB) by incorporating temporal
resolution and extending capabilities to simulate long-
term land-use scenarios. The model application showed
FS is influenced by the dynamics of root strength in
space and time, which was supported by sensitivity
analysis. In particular, the influence of root strength on
landslide susceptibility is greater for clear cuts while
other vegetation types are influenced mostly by the
frequency and magnitude of the events. The results also
showed that the years with the highest spatial and
temporal instability are not the same. The year with the
highest temporal instability was driven by frequent and
smaller rainfall events, while the year with the highest
spatial instability was driven by the largest single
rainfall and stream flow event.

The results from the integrated approach are prom-
ising for management applications and decision-making
in remote areas where detailed information about the
distributed parameters is unavailable. The proposed
methodology could incorporate parameters with various
levels of uncertainties. Although better quantification of
the uncertainty and a more accurate representation of
spatial and temporal parameter variability may be
possible, the intention here was to show a quantitative
unbiased approach in distributing uncertainties to
investigate slope stability in space and time. As
demonstrated, land-use through timber harvesting
affects slope stability, so this methodology could be
further extended to incorporate disturbance events such
as a severe wildfire or insect infestation to reset
conditions for mapping landslide susceptibility. Howev-
er, further testing of the model including field verifica-
tion and additional sensitivity analysis is recommended.
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